The University of Texas at Austin Hildebrand Department of Petroleum and Geosystems Engineering Cockrell School of Engineering

Fundamentals of Drilling Engineering

The University of Texas at Austin

Hildebrand Department of Petroleum and Geosystems Engineering Cockrell School of Engineering

Fundamentals of Production Engineering

Nomenclature **Flow in Pipes** Corrosion Corrosion Reduces metal thickness which leads to a reduction in collapse, burst, and tensile forces Mechanical Energy Balance Friction Factor mass = mass lostLiquid Flow Consistent Unit Corrosion Influences Approximate Material Selection Monitoring - Corrosion Coupon loody correlations bas on Reynolds Number $\Delta t = \text{test duration}$ Max Temp ★ 482°F Corrosion Rate In general, hard metal Max Temp 392°F 25Cr $N_{\rm Re} = 1.478 \frac{q\rho}{ID\mu}$ $\rho_c = \text{coupon density}$ $+ gLsin\theta + \frac{g}{\rho}(P_2 - P_1) + 2\bar{v}^2 \frac{L}{ID}f = 0$ 10 ure (atm) with large σ_y will corrode quicker than softer metal $= \frac{\Delta mass}{\rho_c A_s \Delta t} [=] \frac{mil}{yr} \quad \frac{mil}{yr}$ 50Ni-6Mc $\frac{8q^2}{\pi^2} \left(\frac{1}{ID_2^4} - \frac{1}{ID_1^4} \right)$ inch 25 Cr 25Cr-35Ni-3Mo Max Temp 572°F CR = $\frac{mn}{yr} = \frac{mn}{1000 \ yr}$ A_s = coupon surface area 13 Cr ρ·-- \square 25 Cr 20Cr-35Ni-5Mo $N_{\rm Re} = 20.09 \frac{\gamma_g q_{sc}}{ID\mu}$ with a smaller σ_{v} 13 Cr duplex Flow in Pipes duplex 22Cr-42Ni-3Mo Energy of CR[=] thickness loss/time Expansion or Compression Potential energy vertical flow $\theta = 90^{\circ}$ = friction factor Increases Corrosion Rate partial pr I-55 Pitting Rate ID = internal diameter[=]in L-80 Gas Flow Consistent Units Following variables increase N-80 Laminar Flow Max Temp 300°F if 0.01 $PR = d/\Delta t = mil/yr$ = pipeline length[=]ft C-90 Cr-Mo Salt concentration P-110 $N_{\rm Re} \le 2100$ 0⁷ 1E-T-95 deepest pit depth $\Delta t = \text{test duration}$ $v_g = \text{gas specific gravity}$ $\frac{zRT}{\gamma_g MW_{air}P} dP + gL\sin\theta + \frac{32fL}{\pi^2 ID^5} \left(\frac{q_{sc} zTP_{sc}}{PT_{sc}}\right)^2 = 0$ Dissolved gas not noted 0-125 Flow in pipe ∆KE negligib - Dissolved gas - Dissolved CO₂ - Dissolved H₂S - Temperature $f = \frac{16}{N_{\text{Re}}}$ CR (mil/yr) PR (mil/yr) Severity $MW_{ain} = molar mass of air$ 1E-4 1E-3 0.01 0.1 1 10 H₂S partial pressure (*atm*) 100 $\begin{array}{l} \text{horizontal} \\ \theta = 0^{\circ} \end{array}$ <1.0 <5.0 Low 1.0-4.9 5.0-7.9 Moderate $\iota =$ fluid viscosity[=]cpN_{Re} = Reynold's number $P_{CO_2} = z_{CO_2} P_{BH} \quad P_{H_2S} = P_{BH} (H_2 S \, ppm/1x 10^6)$ $P_2^2 - P_1^2 = 1.0068 x 10^{-4} \left[\frac{\gamma_g \bar{z} \bar{T} q_{sc}^2}{ID^5} \{ fL + ID \ln(P_1/P_2) \} \right]$ Turbulent Flow Horizontal 5.0-10.0 8.0-15.0 Decrease in pH Severe P₁ = inlet pressure[=]psi = CO_2 fraction P_{BH} = static bottom hole P[=]attached attached attP₂ = outlet pressure[=]psi $N_{\rm Re} > 2100$ Scale Inclined Gas Flow q = liquid rate[=] bbl/day $f = \frac{0.0791}{N_{\rm Re}^{0.25}}$ $P_2^2 = e^s P_1^2 + 2.685 x 10^{-3} \frac{f(\bar{x}\bar{T}q_{sc})}{ID^5 \sin\theta} (e^s - 1) \quad \left| s = \frac{-0.0375 \gamma_g L \sin\theta}{\bar{x}\bar{T}} \right|$ $q_{sc} = \text{gas rate}[=] Mscf/day$ Calcium Carbonate Scale Sulfate Scale Tendencies p =fluid density[=] lb_m/ft^3 Calculate the solubility (S) of the ion to predict scale Calculate the Langelier Saturation Index (LSI) to predict scale ' = avg. flowing temp[=]RFlow Control at the Surface $pH_s = pH$ at saturation $LSI = pH - pH_s$ $S = \left[X^{2} + 4K_{sp} - X \right] X = [C] - [A] [=] mol/L$ pH = actual pHvelocity[=] ft/sec Gas Flow Through a Choke Liquid Flow – Choke = avg. z-factor S = ion solubility[=] mol/L | [C] = cation molarity $pH_s = 0.1\log_{10}(TDS) - 13.12\log_{10}(T) - \log_{10}\{(Hard)(Alk)\} + 44.15$ $\rightarrow \underset{\text{value}}{\text{critical }} \text{CV} = \left(\frac{2}{\gamma_H + 1}\right)^{\frac{\gamma_H}{\gamma_H - 1}}$ Isothermal, steady-state $\hat{C}_p M W_{\underline{air} \gamma_g}$ Flow Control mechanical energy balance $K_{sp} = \text{equilibrium coefficient} | [A] = \text{anion molarity}$ specific TDS = total dissolved solids[=] mg/L T = temperature[=]Kspecific eat ratio $\gamma_H \approx \frac{1}{\hat{C}_P M W_{air} \gamma_g - 1.99}$ D_c = choke diameter[=]in $\frac{1}{2}(v_2^2 - v_1^2) = g \frac{P_1 - P_2}{r_1^2}$ $Hard = hardness = 1000 [MW_{CaCO_3}([Ca] + [Mg])] [=] mg/L$ Compute equivalents per liter for cation and anion $ID_n = upstream diameter[=]in$ $\left(\frac{P_2}{P_1}\right)_m$ uses measured pressures from well Compare solubility to minimum value $\Delta P = \Delta P$ across choke[=]psia $\left(\frac{P_2}{P_1}\right)_m \le CV$ $\left(\frac{P_2}{P_1}\right)_m > CV$ $\frac{(ion mg/L)(ion charge)}{L} = \frac{eq}{L}$ Alk = alkalinity[=]mg/L $MW_{CaCO_3} = 100.09 \ g/mol$ [ion][=]mol/L $\frac{8081.7C(D_c^2)}{\Delta P}$ $\hat{C}_P = \text{constant pressure specifi heat capacity}[=] BTU/lb_m^{\circ}F$ $1 - \left(\frac{D_c}{ID_p}\right)^4 \sqrt{\rho}$ $P_1 = upstream pressure$ $Alk = 500[MW_{CaCO_3}([HCO_3] + 2[CO_3] + [OH] + [H])]$ [H] is negligible $1000(MW_{ion})$ Critical flow Critical flow $D_{64} = 64(D_c)[=]in/64$ $P_2 = \text{downstream pressure}$ Scale is likely to form if $LSI \ge 0$ Scale is likely to form if $S \le eq/L$ $\Gamma_1 = upstream temp[=]R$ $q = 0.238 C D_{64}^2 P_1 \left| \frac{\gamma_H \left\{ C V^{\left(\frac{2}{\gamma_H}\right)} - C V^{\left(\frac{\gamma_H + 1}{\gamma_H}\right)} \right\}}{C V^{\left(\frac{\gamma_H + 1}{\gamma_H}\right)}} \right\}$ **Pipeline Design** Pipeline Design Discharge Coefficient (C) $\sigma_v = \min$. yield strength[=]ps actual flow rate General Design Steps *C* = = wall thickness[=]in theoretical rate 1. Determine proper regulatory policy 5. Calculate P_i and P_{MT} 6. Determine test pressure 7. Final burst rating check OD = outer diameter[=]in Critical Flow Not Achieved Empirical Estimate - Do not proceed until established $P_i = \frac{2(SF)\sigma_y t}{SF} = 0.875$ $P_d = \frac{2\sigma_y t}{OD} FET$ - As specified by correct P_i = internal pressure[=]psi regulatory policy $C = C_1 - 6.53 \sqrt{\frac{D_c}{ID_p N_{\text{Re}}}}$ $C_1 = 0.907 \tau$ Design engineer's responsibility $\frac{\gamma_H+1}{\gamma_H}$ $\frac{\gamma_H}{\gamma_g T_1(\gamma_H - 1)} \left[\left(\frac{P_2}{P_1} \right)_m^{\frac{2}{\gamma_H}} \right]$ P_{MT} = mill test pressure[=]psi $\left(\frac{P_2}{P_1}\right)_m^{\frac{P_1}{\gamma}}$ OD P_d and $P_{test} < 0.85 P_{MT}$ $q = 0.238CD_{64}^2P_1$ 2. Determine pipe diameter $P_{test} = 1.5 MAOP \text{ or } 1.25 P_{o}$ P_b = burst pressure[=]psi $P_{MT} \cong 0.8 P_i$ $P_i [=] P_h$ $C_1 = 0.9975$ Example using ASME B31.8 - Based on flow rate and exit pressure whichever is grea P_d = design pressure[=]psi Flowing Temp 3. Determine MAOP for pipeline Construction Type F Joint Type Т IPR Inflo Performance Relation (IPR) Private right of way (PROW) 0.72 < 250 °F 1.0 Threaded seamless 1.0 q_o^{sc} = oil rate[=] STB/day - Maximum allowed operating pressu **Oil Productivity Index** Single-Phase Oil IPR Gas Productivity Index 250 - 300 °F 0.967 0.6 PROW on fringe of populated areas Threaded ERW 1.0 Pe = boundary pressure[=]ps 4. Estimate pipe σ_v and t 300-350°F 0.933 $J_o = \frac{q_o^{sc}}{P_e - P_{wf}} [=] \frac{STB}{psi \cdot day}$ Decreasing P_e over time $J_g = \frac{q_g^{sc}}{P_e^2 - P_{wf}^2} [=] \frac{Mscf}{psi^2 \cdot day}$ P_{wf} = flowing wellbore[=]psi Sparsely populated residential areas 0.5 Furnace lap welded 0.8 $1.5(MAOP) = \frac{2\sigma_y t}{OD}FET$ 350 - 400 °F 0.900 $k_o = oil permeability[=]mD$ 0.4 Populated areas and public roads Furnace butt welded 0.6 400 - 450 °F 0.867 Apply steady-state & radial flow h = reservoir thickness[=]ftSteady-state & radial flow \overline{J}_{a} Predicting Gas Production $B_o = \text{oil FVF}[=] RB/STB$ $0.00708k_{o}h$ $7.0225 x 10^{-4} (k_g h)$ Gas decline curves are harder to predict due to the $\mu_o = oil viscosity[=]cp$ J_g Common Issues $\overline{\mu_g \bar{z}T \left[\ln \left(\frac{r_e}{r_w} \right) - \frac{1}{2} + s \right]}$ $B_o \mu_o \left[\ln \left(\frac{r_e}{r_w} \right) - \frac{1}{2} + s \right]$ a_{o}^{sc} (STB/day) high expansivity of gas Detection Methods Prevention Methods Removal Methods re = drainage radius[=]ft Damage Type Can lead to an overestimation of total recovery w = wellbore radius[=]fi If B_0, μ_0, k_0 relatively constan Calcium Water analysis Scale inhibito Only good for single phase flow Gas properties evaluated at \overline{P} J_o is a constant HCl acid job = skin factor Can use a P/z plot as another predictor arbonate Scal Physical sample Scale squeeze Gas IPR Curves $\overline{p} = avg.$ reservoir P[=]psi<u>Two-Phase IPR</u> ($P < P_{BP}$) - Developed from the Real Gas Law Barium Sulfate Scal Water analysis Mechanical removal Scale inhibito ecreasing Pe over time $k_g = \text{gas permeability}[=]mD$ Physical sample Empirical correlation (Vogel, 1968) Re-perforation Decreasing \overline{P} over time P/z Plot - OGIP Estimation $q_g^{sc} = \text{gas rate}[=] Mscf/day$ P_{wf} (psi) Water analysis Physical sample Sodium Reduce pressure dro esh H₂O circulatio $\frac{q_o}{s} = 1 - 0.2X - 0.8X^2$ $\bar{\iota}_g = avg. gas viscosity[=]cp$ Absolute Chloride to reduce gas cooling Water influx q_{o,max} Open Flow ' = reservoir temp[=]R $X=P_{wf}/\bar{P}$ No water influx Emulsion Emulsion breaker Emulsions and Sludge Physical sample Lab analysis breake Mutual Solvent Predicting Gas Production Can replace \overline{P} with P_e q_o^{sc} (STB/day) $\left(\frac{\overline{\mathbf{P}}}{\mathbf{z}}\right)$ q_a^{sc} (Mscf/day) Liquid Block Gas Well Well history Lab analysis Limit pressure drop at wellbore G_P = cumulative gas produced Mutual solvents ertical Lift Performance $G_{w} = recoverable gas$ Curve Analysis G = original gas in place Vertical lift performance can be developed Physical sample Inhibitors Inhibitors Hyperbolic Decline Asphaltene b = 0 = b = 0.5 = b = 1Oil analysis Application of hea Application of heat $G_{ab} = G_r$ Decline Curve Analysis by using the mechanical energy balance (Arps, 1940) Inhibitors Application of heat VLP displays bottom hole pressure required Inhibitors Physical sample = hyperbolic exponent G = OGIPParaffir 0 < b < 1to flow to surface at varying flow rates Oil analysis Application of hea a = future rate [=] prod/tim VLP & IPR $q_i = initial rate[=] prod/time$ Limit production rate Gravel/frac pack Re-perforation Small frac job Formation Fines Physical sample $q=\frac{\cdot \iota}{(1+bD_it)^{1/b}}$ - 2.375" tbg 2.875" tbg 3.5" tbg IPR As b-factor increases, well's economic life increases = time Clay D = decline rate[=] 1/timeSmaller ID requires Lab analysis Don't introduce Re-perforation Small frac job $RF = \frac{G_r}{G}$ $t = \frac{1}{D_i b} \left\{ \left(\frac{q_i}{q} \right)^b - 1 \right\}$ $\left(\frac{\overline{P}}{z}\right)_{i}\frac{1}{\overline{G}}G_{P}$ Time $\left(\frac{P}{z}\right) = \left(\frac{P}{z}\right)$ Swelling roduction rate dro incompatible wat $D_i = initial decline[=] 1/time$ more pres Physical sample Lab culture Don't introduce acteria laden wate $N_n = \text{cumulative production}$ Recovery Bacteria Bacteriacide factor Artificial Lift $N_p = \frac{\left(q_i - q_i^b q^{1-b}\right)}{2}$ Need more Pw PIP = pump intake P Artificial Lift than well provide: $D_i(1-b)$ FL. PDP = pump discharge P Rod Pump ESP Gas Lift Common Issu Beam Lift EL $\Delta P_{SV} = \Delta P$ thru standing value 3000 Excellent 0 2000 30 q_o^{sc} (STB/day) $D = D_i \left(\frac{q}{q_i}\right)$ Sand Fair Fair Pressure Differential Across Plunger Rod Loads b = 0 = b = 0.5 = b = 1 $P_{s,tbg} = tbg surface pressure$ Paraffir Poor Good Poor $PPRL = W_{rf} + F_o + W_{D,uv}$ IPR < VLP need artificial lift to flow to surface $\Delta P = PDP - PIP + \Delta P_{SV}$ $PIP = P_{wf}$ $\nabla P_{tbg} = tbg fluid P gradient$ High GOR Fair Fair Excellen cker Force Fair Deviated Hole Poor $MPRL = W_{rf} - W_{D,down}$ Good $PDP = \nabla P_{tbg} D_{pump} + P_{s,tbg} + P_{fric}$ S = surface stroke length[=]in Good Fair Fair stretch[=]in Corrosion Piston Forces Pump Displacement $W_{rf} = W_{rod} \left(1 - \frac{\rho_f}{\rho_{rod}}\right) \quad \begin{array}{l} W_{rf} = \text{buoyed} \\ \text{rod weight} \end{array}$ Tubing Movemen Poor Excellent Good High Volume If tbg free to move, need to make sure pkr stays sealed $s_{rod} = rod stretch[=]in$ $F_a = F_{SO} + P_a \left[\frac{\pi}{4} \left(OD_b^2 - OD_s^2 \right) \right]$ $q = 0.1166Nd_p^2S_p\eta_p[=]bbl/day$ Depth Fair Fair Good MPRL = min. polish road load Yes pump speed[=]spm η_p = pump efficiency $SV_{load} = W_{rf}$ $TV_{load} = F_0 + SV_{load}$ Simple Design Yes No PPRL = peak polish rod load $P_a = P_{s,ann} + D_{pkr} \nabla P_{ann}$ Casing Size Fair Good Good dp = plunger diameter[=]in Pump Slippage (Patterson, et al, 2007) $F_o = \text{fluid weight}[=]lb_f$ $F_{so} =$ slacked offtubing weight Flexibility Fair Poor Good $q_{s} = (1 + 0.14N)453 \frac{d_{p} \Delta P c_{p}^{1.52}}{L_{p} \mu_{f}} [=] \frac{bbl}{day}$ Effective Stroke Length $W_D = dynamic load[=]lb$ Total ΔL ^{Tota}. Movemen OD_b = packer bore diameter[=]in Production Scale Good Poor Fair $S_p = S + s_{po} - s_{tbg} - s_{rod}[=]in$ $L_p \mu_f$ $L_p = plunger seal length[=]ii$ $OD_s = metal seal tube OD[=]in$ 84% 2% 11% Onshore Usage $c_p = plunger clearance[=]in \quad \mu_f[=]cp$ = plunger overtravel s_{tbg} = 0 tbg anchored Packer Forces $D_{pkr} = packer true vertical depth$ $P_{s,ann} = \text{surface pressure in annulus}$ $P_a = P$ above the packet ource Economics $P_b^u = P$ below the packer ∇P_{ann} = annulus fluid pressure gradier Time Value of Money Reserve Classification - Common Acronyms $ID_c = seals ID[=]in$ $F_b = -P_b \left[\frac{\pi}{4} \left(OD_b^2 - ID_s^2 \right) \right]$ I. PDP: Proved Developed Producing - well is online and producing Temp PV = present value PV = (FV)(DF)DR = discount rate Anter = cross sectional area ength . PDNP: Proved Dev. Non-Producing – reserves are behind pipe, well is FV = future value DR[=] decimal/yr $\Sigma F MD$ $P_b = P_{s,tbg} + D_{pkr} \nabla P_{tbg}$ $\Delta P_{ann} = avg. \Delta P$ in annulus $\varSigma F = F_b + F_a + F_{bu} + F_{ba} + F_T \ \left| \ \Delta L = \frac{\varDelta r}{A_{tbg}} \frac{P^{t} \nu}{E} [=] ft$ $DF = \left(1 + \frac{DR}{n}\right)$ shut-in, or waiting on necessary equipment installation to produc $\Delta P_{tha} = avg. \Delta P$ in the tubing DF = discount factort = time in yearsPermanent Buckling 3. PUD: Proved Undeveloped - offsetting wells or existing wells that $E_a =$ force acting on seals from above MD =pkr measured depth $\delta = \text{linear thermal expansion}$ would require a major recompletio n = discounting periods per year $F_{bu} = A_{pkr} (\Delta P_{ann} - \Delta P_{tbg})$ Converting Production into Cash Flow Resource Economics = force acting on seals from below $A_{tbg} = cross sectional area$ $\Delta P_{ann} = \Delta P_{s,ann} + \frac{D_{pkr} \nabla P_{ann}}{\Gamma}$ Economic Limit Net Revenue Disc. Cash Flow NRI = net revenue interest OPEX[=]\$/time If the cannot move, need to check tensile strength of pkr and the $EL = \frac{OPEX}{NP} \left(\frac{WI}{NRI}\right) [=] \frac{prod}{time}$ (GR)(NRI) (NR)(ST + AVT) NR - OPEX - TAX (CF)(DF)OP = oil price WI = working interest $F_{top} = MD(W_B) - F_T - F_{ba} - F_{SO}$ $\Delta P_{tbg} = \Delta P_{s,tbg} + \frac{D_{pkr} \nabla P_{tbg}}{2}$ AVT = ad valorem taxue = (production)(gross price) NP = net priceforce at top of tubing W_B = buoyed tbg weight [=] lb_f/ft Evaluating Potential Investments GP = gas price $NP_{a} = OP(1 - ST_{a} - AVT) + GP(GOR)(1 - ST_{a} - AVT)$ Disc. Return on Investment | Disc. Rate of Return | Undiscounted Payout DCF | Discount rate that | Time required to return GOR = gas-oil ratio Temperature Change Tubing Ballooning (for steel) $DROI = \frac{DOI}{Investment}$ DCF $NP_g = GP(1 - ST_g - AVT) + OP(OY)(1 - ST_o - AVT)$ $NP_{\alpha} = \text{net gas price}$ $\sum_{\delta=6.9}^{L=30} \sum_{x \downarrow 10^{-6} \circ F^{-1}} \left| F_{ba} = 0.6 \frac{\pi}{4} \left(\Delta P_{ann} O D_{tbg}^2 - \Delta P_{tbg} I D_{tbg}^2 \right) \right|$ $F_T = A_{tbg}(\Delta T)E\delta = 207A_{tbg}(\Delta T)$ yields a net present initial investment using DCF = discounted cash flow $NP_o = net oil price$ ST = severance tax OY = oil yieldvalue of zero undiscounted cash flow Created by James Riddle with guidance from Dr. Paul Bommer and Dr. Matthew T. Balhoff